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Abstract
Straight-field-line coordinates are very useful for representing magnetic fields in toroidally
confined plasmas, but fundamental problems arise regarding their definition in 3D geometries
because of the formation of islands and chaotic field regions, i.e. non-integrability. In
Hamiltonian dynamical systems terminology these coordinates are similar to action-angle
variables, but these are normally defined only for integrable systems. In order to describe 3D
magnetic field systems, a generalization of this concept was proposed recently by the present
authors that unified the concepts of ghost surfaces and quadratic-flux-minimizing (QFMin)
surfaces. This was based on a simple canonical transformation generated by a change of
variable θ = θ(�, ζ ), where θ and ζ are poloidal and toroidal angles, respectively, with � a
new poloidal angle chosen to give pseudo-orbits that are (a) straight when plotted in the ζ, �

plane and (b) QFMin pseudo-orbits in the transformed coordinate. These two requirements
ensure that the pseudo-orbits are also (c) ghost pseudo-orbits. In this paper, it is demonstrated
that these requirements do not uniquely specify the transformation owing to a relabelling
symmetry. A variational method of solution that removes this lack of uniqueness is
proposed.

1. Introduction

Recent calculations [1] of heat diffusion along chaotic field
lines show that the isotherms correspond very closely with
the ‘approximate’ magnetic surfaces, associated with magnetic
island chains, known as ghost surfaces [2]. These surfaces
include the ‘X-point’ and ‘O-point’ closed field lines of their
associated islands. (By ‘O-point’ field line we mean either
the elliptically stable field line at the centre of an island or
its hyperbolically unstable continuation if it has undergone
a period-doubling bifurcation.) Closed field lines make the
magnetic action stationary, the hyperbolic X-point field lines
in the chaotic separatrices being minima and the O-point field
lines being minimax or saddle points of the action. Ghost
surfaces are constructed by interpolating smoothly between
these two closed-field-line classes by evolving the O-point field
lines into the X-point field lines along paths of steepest descent
of action, thus generating a family of ‘pseudo-orbits’, i.e. paths
that come close to making the action stationary.

Ghost surfaces have nice mathematical properties but
are difficult to construct and have no obvious physical
interpretation. An alternative approach to defining

approximate magnetic surfaces passing through magnetic
islands is to use the quadratic-flux-minimizing (QFMin)
surfaces introduced by Dewar et al [2, 3]. These surfaces have
the computational attraction of being easy to construct using
(pseudo) field-line tracing methods, and the physical attraction
of being defined in terms of a measure of the magnetic flux
transport through the surface, but have been found to exhibit
undesirable distortions in some circumstances. Thus a unified
approach that combines the best features of ghost and QFMin
surfaces is desirable.

Both QFMin surfaces and ghost surfaces can be
formulated in terms of the action gradient, but the action
gradient is coordinate dependent. We have recently [4]
exploited this coordinate dependence by finding the conditions
under which a transformation from a given ‘old’ poloidal
coordinate θ to a ‘new’ poloidal angle � makes ghost and
QFMin surfaces identical (a process we call reconciliation).
An added benefit of this construction is that it makes the
pseudo-orbits straight when plotted in the ζ, � Cartesian plane.
As this is similar to the way the action-angle transformation for
integrable systems makes the true orbits rectilinear, we term
this a generalized action-angle transformation.
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Our principal motivation is finding an optimal general-
ization of straight-field-line magnetic coordinates in toroidal
systems. As is well known (see, e.g., [5] and references
therein) that magnetic fields can be described as 1 1

2 -degree-
of-freedom Hamiltonian systems we shall build our treatment
upon standard classical mechanics, as for instance in [6], with
the poloidal angle θ as the generalized coordinate and the
toroidal angle ζ as the ‘time’. Also, in this paper we use only
the Lagrangian approach to classical mechanics as it is some-
what simpler in the single-torus case we study. The translation
between the Lagrangian and Hamiltonian approaches in the
context of our generalized pseudo-orbit approach is developed
in [7].

An analogue of our reconciliation prescription has
recently been implemented [8] for a discrete-time dynamical
system, an iterated area-preserving map (the standard or
Chirikov–Taylor map), as a model problem. A variational
approach was used to perform numerical experiments aimed
at finding whether the prescription can reconcile ghost
and QFMin almost-invariant curves at arbitrary nonlinearity.
(Unreconciled ghost and QFMin curves have been constructed
for standard-map nonlinearity parameters up to k = 100 [9].)
Reconciliation transformations were successfully constructed
for quite high nonlinearity (k ∼ 1) after it was realized that
there was a lack of uniqueness in the prescription of [4]
that could be fixed by reducing the number of Fourier basis
functions appropriately.

In this paper we identify this lack of uniqueness as due
to a relabelling symmetry. Relabelling symmetries also occur
in MHD and fluid dynamics [10] and are analogous to gauge
symmetries in physical field theories [11]. Thus, making the
new poloidal angle unique is analogous to fixing a gauge to
make the representation of a field unique. We propose a
dual-objective-functional variational method for constructing
a unique reconciliation transformation.

In section 2 we review the basic classical mechanics
concepts required and introduce the concept of periodic
pseudo-orbits and associated almost-invariant tori. In section 3
we give a concise derivation of the reconciliation conditions
found in [4] and in section 4 we demonstrate that, given one
solution satisfying the reconciliation conditions, an infinity of
solutions may be generated by relabelling the points at which
the pseudo-orbits cross the ζ = 0 surface of section. A primary
objective functional that respects the relabelling symmetry
and, when minimized to zero, gives valid reconciliation
transformations is presented in section 5. Approaches for
fixing the non-uniqueness problem are discussed in section 6
where we propose a secondary objective function, whose
minimization with respect to reconciliation transformations
generated by relabelling transformations will both remove (or
at least reduce) the non-uniqueness and ensure invertibility
of the reconciliation transformation. Some areas for further
research are briefly indicated in section 7.

2. A simple canonical transformation

A (pr, qr)-periodic path is defined in the θ, ζ plane by the curve
θ = ϑ(ζ ) subject to the periodicity condition ϑ(ζ + 2πqr) =

ϑ(ζ ) + 2πpr (pr and qr are mutually prime integers). Physical
examples of such paths are the elliptic and hyperbolic closed
field lines (periodic orbits) passing through the O and X
points of a magnetic island chain formed through the resonant
destruction of a rational surface with rotational transform
�ι = pr/qr (safety factor q = qr/pr), but we also consider
pseudo-orbits—paths that are ‘not quite’ physical.

As our theory is based on variational principles, we also
consider variations δϑ of paths away from either physical or
pseudo-orbits. For instance, the action integral S defined on
an arbitrary (pr, qr)-periodic path is defined as a functional of
the path function ϑ by the integral

S[ϑ] =
∫ 2πq

0
L(ϑ, ϑ ′(ζ ), ζ ) dζ, (1)

where L ≡ L(θ, θ̇ , ζ ) is the Lagrangian. Varying ϑ in (1) and
integrating by parts we find the functional derivative of S as
the coefficient of δϑ in δS,

δS

δθ
= Lθ − dLθ̇

dζ
, (2)

where Lθ andLθ̇ denote the partial derivatives of Lwith respect
to its first and second arguments, respectively. In the following
we refer to δS/δθ as the action gradient as it can be thought of
as the generalization of the gradient of a function to the infinite-
dimensional space of path functions ϑ(ζ ). The action gradient
δS/δθ can also be shown to play the role of a phase-space
flux density (or magnetic flux density in the case of field-line
dynamics.)

Hamilton’s principle [6] is the statement that S is
stationary (δS/δθ = 0) on physical orbits, i.e. the true equation
of motion is obtained by setting the action gradient to zero. We
shall term paths for which the action gradient is not zero, but
in some sense small, pseudo-orbits.

We also term toroidal surfaces composed of families
of pseudo-orbits almost-invariant tori, specific cases being
ghost tori when the pseudo-orbit families are constructed by
an action-gradient flow joining true orbits, and QFMin tori
when the pseudo-orbit families are constructed variationally
to minimize the ‘quadratic flux’ 1

2

∫∫
(δS/δθ)2dθdζ , which

is a measure of flux transport through the almost-invariant
tori. The Euler–Lagrange equation for QFMin pseudo-orbits is
(d/dζ )δS/δθ = 0, implying that the action gradient is constant
along each QFMin pseudo-orbit (which includes the case of a
true orbit, when the constant is zero). For details see [7].

The momentum canonically conjugate to θ is

I = Lθ̇ . (3)

Following [4] we shall seek to reconcile the QFMin and
ghost formulations on a single almost-invariant torus using a
canonical transformation generated by a change of generalized
coordinate from θ to a new poloidal angle �,

θ = θ(�, ζ ), (4)

transforming the Lagrangian by the point transformation
[6, pp 33, 386] Lnew(�, �̇, ζ ) = Lold(θ, θ̇ , ζ ). (As this is

2
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simply a statement that the Lagrangian is invariant under the
transformation, henceforth we leave the subscripts, ‘old’ and
‘new’ implicit as it is clear from the arguments which is meant.)
We assume that the mapping � �→ θ is invertible, implying
that θ(�, ζ ) is a monotonic (increasing) function of � for all ζ .

Equation (4) generates a canonical transformation θ, I �→
�, J , where the new momentum conjugate to � is J ≡
∂L/∂�̇. Differentiating (4) we find

θ̇ = (∂ζ + �̇ ∂�)θ(�, ζ ) ≡ θζ + �̇ θ�, (5)

where θ� and θζ denote the partial derivatives of the
transformation function θ with respect to its first and second
arguments, respectively. (Invertibility implies that θ� > 0.)
Thus L = L(θ, θζ + �̇ θ�, ζ ), giving

J = θ�Lθ̇ ≡ θ�I. (6)

Note that this canonical transformation deforms the whole
phase space by rescaling the momentum variable by an amount
that varies with θ . While this is rather drastic, it does not
matter for our current purposes as we are only interested in the
neighbourhood of a single phase-space torus.

As the action along any path is invariant under the
transformation, the variation δS is also invariant, implying
δ� δS/δ� = δθ δS/δθ for all δθ . Noting that, from (4), δθ =
θ�(�, ζ )δ�, we immediately see that the action gradients in
the new and old variables are related by

δS

δ�
= θ�

δS

δθ
. (7)

3. Reconciliation of QFMin and ghost surfaces

The Euler–Lagrange equation [7] deriving from the QFMin
principle in the new coordinate (varying the family of paths in
�, ζ space making up a trial torus, with a given transformation
function θ(ζ, �)) is

d

dζ

δS

δ�
= 0. (8)

That is, the action gradient δS/δ� is constant on each
individual member of the family of pseudo-orbits that makes
up the (pr, qr) almost-invariant torus under consideration.
Denoting this constant by ν we have

δS

δ�
= ν(�0), (9)

where �0 is the initial value of � on a pseudo-orbit, which
we here use as a pseudo-orbit label. The function ν(�0) is
constant along each pseudo-orbit but varies in an oscillatory
fashion across the pseudo-orbit family, passing through zero
at the action-minimizing and minimax true orbits [9].

Ghost pseudo-orbits are defined in the new coordinates by
a gradient flow driven by the action gradient,

D�

DT
= δS

δ�
, (10)

where the evolution variable T is a label for ghost pseudo-
orbits which goes from −∞ to +∞ or vice versa depending on
whether the evolution is up or down the action gradient. (We
need to consider both cases to fill in the gaps between action-
minimizing and minimax orbits, and we use the notation DT to
emphasize that this flow is across the family of pseudo-orbits
rather than along them like the pseudo-dynamics generated by
d/dζ .)

By reconciliation we mean that these two classes of
pseudo-orbits are equivalent, so T and �0 are functionally
dependent: T = T (�0), DT = T ′(�0)D�0. Eliminating
δS/δ� between (9) and (10) we find the reconciliation
condition

D�

D�0
= T ′(�0)ν(�0), (11)

which puts an important constraint on the reconciliation
transformation (4): it must be such that D�/D�0 is
independent of ζ . (Assuming this can be satisfied, it then
relates the ghost pseudo-orbit evolution parameter T to the
QFMin pseudo-orbit label �0.) But, at ζ = 0, D�/D�0 ≡
1 by definition. Thus the reconciliation condition implies
D�/D�0 ≡ 1 for all ζ .

This condition implies that �(ζ |�0) must separate in
the form �0 + f (ζ ), with f arbitrary except for periodicity
requirements. The simplest and most natural choice to try is
to take f linear in ζ ,

�(ζ |�0) = �0 + �ιζ, (12)

with �ι ≡ p/q. Equation (12) conjugates the θ pseudo-
dynamics to rigid rotation,

ϑ(ζ |θ0) = θ(�0 + �ιζ, ζ ), θ0 ≡ θ(�0, 0), (13)

in the same way that the action-angle transformation
conjugates the true dynamics to rigid rotation [6], which
is why we term (�, J ) generalized action-angle variables
(in field-line terms, they might also be called ‘straight-
pseudo-field-line coordinates’). In the following we propose
a variational method for satisfying the new QFMin Euler–
Lagrange equation (8) and the reconciliation condition in
the simplified form (12), thus making the new QFMin torus
coincide with the new ghost torus.

4. Relabelling transformation

Do the reconciliation conditions (8) and (12) define the
reconciliation transformation (4) uniquely? We show in this
section that the answer is in the negative—if there exists at least
one solution, then there exists an infinity of different solutions
generated by a class of transformations, � �→ �̄, of the form

�̄(�, ζ ) = � + �̃(� − �ιζ ), (14)

with �̃(�0) any function of �0 that is 2πqr-periodic. The
necessity of the 2πqr-periodicity restriction is to preserve
2π -periodicity in ζ , as can best be seen in Fourier
representation,

�̄(�, ζ ) = � +
∑
mr

�̃mr sin mr(� − �ιζ ), (15)

(assuming odd parity, and hence a sine series) where the
resonant poloidal Fourier indices mr are integer multiples of qr

3
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in order that corresponding resonant toroidal Fourier indices
nr = mr�ι ≡ mrpr/qr exist.

If � = �0 + �ιζ then �̄ = �̄0 + �ιζ , where �̄0 ≡ �̄(�0, 0).
Thus these transformations rearrange the set of pseudo-orbits
�0 + �ιζ by translating them up and down in the ζ, � Cartesian
plane in such a way that they are all still rectilinear with slope
�ι. As each �0 labels a different orbit after the transformation
than it did before, we call transformations of the form (14)
relabelling transformations.

Composing relabelling transformations with the reconcil-
iation transformation (4) gives what we now proceed to show
to be an equivalence class of reconciliation transformations
θ̄ (�, ζ ),

θ̄ (�̄(�, ζ ), ζ ) ≡ θ(�, ζ ). (16)

The relabelled conjugacy equation, analogous to (13), is

ϑ̄(ζ |θ̄0) = θ̄ (�̄0 + �ιζ, ζ ), θ̄0 ≡ θ̄ (�̄0, 0). (17)

the velocity ϑ ′ and acceleration ϑ ′′ transform similarly. Thus,
the ‘unreconciled’ action gradient (2) is invariant under
relabelling,

δS

δθ
(ϑ̄, ϑ̄ ′, ζ ) = δS

δθ
(ϑ, ϑ ′, ζ ). (18)

Differentiating both sides of (16) with respect to � gives

�̄�(�, ζ )θ̄�̄(�̄, ζ ) ≡ θ(�, ζ ), (19)

where, from (16), �̄�(�, ζ ) = 1 + �̃′(�− �ιζ ). Using (2) and
(19) we find the relabelling transformation condition for the
‘reconciled’ action gradient (7),

�̄�(�0)
δS

δ�̄
= δS

δ�
. (20)

Taking the total derivative of both sides of (20) with respect to
ζ and observing that d�̄�(�0)/dζ = 0 commutes with d/dζ ,
if (8) is satisfied before the relabelling transformation, it will
be satisfied after, and thus the relabelling transformations (14)
generate equivalent reconciled solutions.

Finally, consider the case of infinitesimal relabelling
transformations,

�̄(�, ζ ) = � + δ�̃(� − �ιζ ). (21)

Expanding (16) to first order we find the general relabelling
variation

δθ(�, ζ ) = −δ�̃(� − �ιζ ) θ�(�, ζ ). (22)

5. Variational formulation

We can impose condition (12) simply using it as an ansatz
for the pseudo-orbit paths in �, ζ space (which then defines
the paths in θ, ζ space via (4): ϑ(ζ ) = θ(�0 + �ιζ, ζ )), but
imposing (8) is more difficult as it is nonlinear. In [4] we used
perturbation theory, but this is limited to small departures from
integrability. Instead we now introduce a variational approach
that can be used to find numerical solutions for arbitrarily
nonlinear problems by building on standard optimization
methods.

As the (primary) objective functional we take

F [θ ] ≡ 1

2

∫ 2π/qr

0

qrd�0

2π

∫ 2πqr

0

dζ

2πqr

×
[

1

θ�

(
d

dζ

δS

δ�

)2
]

ϑ=θ(�,ζ ), �=�0+�ιζ
(23)

= 1

2

2π∫
0

∫
d�dζ

(2π)2

1

θ�

[
d

dζ

(
θ�

δS

δθ

)]2

,

where we have obtained the second form of F by changing
variables from ζ, �0 to ζ, �, so that, in the first form, d/dζ

denotes ∂ζ with �0 fixed, while in the second form d/dζ =
∂ζ + �ι∂�. The details of the reshuffling of the limits of the
integrals are similar to those spelt out in [7, equation (45)].
Also, in the second form we have used (7) to express δS/δ�

in terms of θ�(�, ζ ) and δS/δθ , which is given explicitly in
terms of the Lagrangian L in (2). The weight factor 1/θ� has
been inserted to make F precisely invariant with respect to
relabelling transformations whether or not (8) is satisfied, as
can be demonstrating by making a change of variable from �

to �̄ and using the results of section 4.
The objective functional F is to be minimized over all

functions θ(�, ζ ) such that θ(�, ζ ) is a 2π -periodic function
of ζ , is monotonically increasing in �, and θ(� + 2π, ζ ) =
θ(�, ζ )+ 2π . (Or, equivalently, such that θ� is 2π -periodic in
both � and ζ , its �-average is unity, and its ζ -average is zero.)
Clearly F [θ ] � 0, with equality applying iff (8) is satisfied.

6. Constraining the relabelling symmetry

If F = 0 for some θ(�, ζ ), an infinity of new solutions
can be generated by applying finite relabelling transformations
(16)—the solution to the QFMin condition (8) is not unique.
Without a further constraint to fix the solution, no optimization
algorithm for minimizing F can ever converge.

One such constraint method derives from the Fourier form
of the relabelling transformation (15) where it is seen that the
relabelling symmetry gives us precisely enough freedom to
constrain the resonant Fourier coefficients in the expansion of
θ to any desired value, thus removing the non-uniqueness in
the reconciliation transformation.

This constraint approach was implicitly adopted in
the perturbation method given in [7], where we set the
resonant Fourier coefficients in the expansion of θ to zero
at first and second order in nonlinearity. An analogous
zero-resonant-coefficient constraint method was used in a
nonlinear numerical study [8], performed using the analogue
of our primary objective functional F for the standard map.
While this study gave convincing evidence that reconciliation
transformations exist for systems with quite large islands and
chaotic regions (standard-map nonlinearity parameter k ∼
1) it was found that the method broke down for stronger
nonlinearity because the transformation � �→ θ became non-
invertible for k � 1.

As there is no compelling reason to set the resonant
coefficients to zero, we propose that a better approach
would be to determine them by minimizing a secondary

4
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objective function G, not invariant under relabelling, over the
equivalence class generated by the relabelling transformations
(14). As the failure of the zero-resonant-coefficient constraint
method manifested itself by θ� going negative, a natural choice
for secondary objective functional is the average of the weight
function 1/θ�,

G[θ ] = 1

2

2π∫
0

∫
d�dζ

(2π)2

1

θ�(�, ζ )
, (24)

which maintains monotonicity because G diverges toward +∞
if θ� → +0 anywhere in the integration domain. Using
the Schwarz inequality for the inner product between the two
functions

√
θ� and 1/

√
θ� we can also show that G is bounded

below by unity, so 1 � G < ∞.
Preliminary numerical experiments on minimizing the

analogue of (24) for the standard map to fix the resonant θm

indicate that breakdown of invertibility can be avoided for
higher k, but more systematic studies need to be performed,
using appropriate dual-objective numerical optimization
methods, before one can conclude that reconciliation can be
performed for arbitrary nonlinearity.

Unfortunately, despite the ubiquity of Lie symmetries
in physics, there appear to be no algorithms in the standard
numerical optimization texts appropriate to this problem.
Multi-objective optimization problems are well known, but
these involve a trade-off between competing objectives (the
Pareto problem), whereas we wish to give 100% Pareto weight
to F and minimize G only over the subspace of directions
where F does not change. (Note that this nullspace is not
precisely the same as the subspace spanned by the resonant
Fourier modes because of the factor θ� in (22).)

A similar relabelling problem arises in three-dimensional
numerical MHD equilibrium calculations, where the objective
function is the total plasma and magnetic energy and the
relabelling symmetry arises from the arbitrariness of choosing
the poloidal angle within magnetic surfaces. A numerical
method [12, 13] for fixing the poloidal angle has been
implemented in the VMEC code [14], using a measure of
the width of the Fourier spectrum as the secondary objective
function. Adaptation of this method, and other optimization
methods, to the present problem will be reported elsewhere.

7. Conclusion

We have reviewed the motivation and formulation of a
recently published [5] unification (reconciliation) of ghost and

quadratic-flux-minimizing (QFMin) surfaces by transforming
to a new poloidal angle, and have identified a relabelling
symmetry that makes the reconciliation transformation non-
unique. We have proposed a variational approach using
a primary objective function to satisfy the reconciliation
conditions and a secondary objective function to fix the
relabelling symmetry, giving an explicit expression for the
gradient of the primary objective function and identifying
the nullspace of its Hessian operator (the space spanned by
infinitesimal relabelling transformations).

Numerical validation of the method at high nonlinearity
remains for further work. Also, the localized variational
approach presented here is based on a canonical transformation
tailored to reconciling the ghost and QFMin approaches on
a single resonant surface using a Lagrangian approach (a
point transformation). To find a global pseudo-magnetic
coordinate system [15, 16], we need to generalize this approach
to find a canonical transformation that allows a simultaneous
multi-surface optimization. We anticipate that the generality
of Hamiltonian methods for constructing ghost and QFMin
surfaces [7] is better adapted to this purpose than the simple
Lagrangian approach used in this paper.
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